If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(d^2-11)=0
We multiply parentheses
3d^2-33=0
a = 3; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·3·(-33)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*3}=\frac{0-6\sqrt{11}}{6} =-\frac{6\sqrt{11}}{6} =-\sqrt{11} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*3}=\frac{0+6\sqrt{11}}{6} =\frac{6\sqrt{11}}{6} =\sqrt{11} $
| 3x-4=x+24 | | (8x)+(99-2x)=180 | | x^2+14x+19=-5 | | -71/2+m=42/3 | | -5+5a-4-2a-3a=-9 | | (D^5-2D^4+D^3)y=0 | | 3(d2-11)=0 | | 3/2x-1/5=11/2 | | Y=(x-3)^3/(5)+2 | | 5^x=4^x+4 | | 71/2+m=42/3 | | (a+4)÷-3=2 | | 4x+9=3x-14 | | 24=6+6u | | 3(x-5)=2(2x+2) | | 5(x+2)-4x=15 | | a+4÷-3=2 | | 21/3+c=85/6 | | Y=(x-3)^3/5+2 | | 60+0.15x=0.43x | | 3x/x+9=x/5 | | 22-2x=0.5x+4.5 | | 44-8z=2(z-3) | | 13.6+5y=9y+4 | | 4p^2-2=7p | | 4x-15=5x-7 | | x4=9 | | 13+11x=37+7x | | 3k^2=75 | | 2w+-5=7w+5 | | 8v+7=3v+37 | | 7v^2=2v+22 |